14,164 research outputs found

    Bulk Connectedness and Boundary Entanglement

    Get PDF
    We prove, for any state in a conformal field theory defined on a set of boundary manifolds with corresponding classical holographic bulk geometry, that for any bipartition of the boundary into two non-clopen sets, the density matrix cannot be a tensor product of the reduced density matrices on each region of the bipartition. In particular, there must be entanglement across the bipartition surface. We extend this no-go theorem to general, arbitrary partitions of the boundary manifolds into non-clopen parts, proving that the density matrix cannot be a tensor product. This result gives a necessary condition for states to potentially correspond to holographic duals.Comment: 12 pages, 2 figure

    Two-body and three-body substructures served as building blocks in small spin-3 condensates

    Full text link
    It was found that stable few-body spin-structures, pairs and triplexes, may exist as basic constituents in small spin-3 condensates, and they will play the role as building blocks when the parameters of interaction are appropriate. Specific method is designed to find out these constituents.Comment: 9 pages, 4 figure

    Entanglement Conservation, ER=EPR, and a New Classical Area Theorem for Wormholes

    Get PDF
    We consider the question of entanglement conservation in the context of the ER=EPR correspondence equating quantum entanglement with wormholes. In quantum mechanics, the entanglement between a system and its complement is conserved under unitary operations that act independently on each; ER=EPR suggests that an analogous statement should hold for wormholes. We accordingly prove a new area theorem in general relativity: for a collection of dynamical wormholes and black holes in a spacetime satisfying the null curvature condition, the maximin area for a subset of the horizons (giving the largest area attained by the minimal cross section of the multi-wormhole throat separating the subset from its complement) is invariant under classical time evolution along the outermost apparent horizons. The evolution can be completely general, including horizon mergers and the addition of classical matter satisfying the null energy condition. This theorem is the gravitational dual of entanglement conservation and thus constitutes an explicit characterization of the ER=EPR duality in the classical limit.Comment: 16 pages, 2 figure

    Splitting Spacetime and Cloning Qubits: Linking No-Go Theorems across the ER=EPR Duality

    Get PDF
    We analyze the no-cloning theorem in quantum mechanics through the lens of the proposed ER=EPR (Einstein-Rosen = Einstein-Podolsky-Rosen) duality between entanglement and wormholes. In particular, we find that the no-cloning theorem is dual on the gravity side to the no-go theorem for topology change, violating the axioms of which allows for wormhole stabilization and causality violation. Such a duality between important no-go theorems elucidates the proposed connection between spacetime geometry and quantum entanglement.Comment: 6 pages, 2 figure

    Entanglement of Purification and Multiboundary Wormhole Geometries

    Get PDF
    We posit a geometrical description of the entanglement of purification for subregions in a holographic CFT. The bulk description naturally generalizes the two-party case and leads to interesting inequalities among multi-party entanglements of purification that can be geometrically proven from the conjecture. Further, we study the relationship between holographic entanglements of purification in locally-AdS3 spacetimes and entanglement entropies in multi-throated wormhole geometries constructed via quotienting by isometries. In particular, we derive new holographic inequalities for geometries that are locally AdS3 relating entanglements of purification for subregions and entanglement entropies in the wormhole geometries.Comment: 23 pages, 12 figures; v2 added references; v3 fixed inequality direction in Eq.(2), expanded discussion - reflects published versio

    Improved Simulation of the Mass Charging for ASTROD I

    Full text link
    The electrostatic charging of the test mass in ASTROD I (Astrodynamical Space Test of Relativity using Optical Devices I) mission can affect the quality of the science data as a result of spurious Coulomb and Lorentz forces. To estimate the size of the resultant disturbances, credible predictions of charging rates and the charging noise are required. Using the GEANT4 software toolkit, we present a detailed Monte Carlo simulation of the ASTROD I test mass charging due to exposure of the spacecraft to galactic cosmic-ray (GCR) protons and alpha particles (3He, 4He) in the space environment. A positive charging rate of 33.3 e+/s at solar minimum is obtained. This figure reduces by 50% at solar maximum. Based on this charging rate and factoring in the contribution of minor cosmic-ray components, we calculate the acceleration noise and stiffness associated with charging. We conclude that the acceleration noise arising from Coulomb and Lorentz effects are well below the ASTROD I acceleration noise limit at 0.1 mHz both at solar minimum and maximum. The coherent Fourier components due to charging are investigated, it needs to be studied carefully in order to ensure that these do not compromise the quality of science data in the ASTROD I mission.Comment: 20 pages, 14 figures, submitted to International Journal of Modern Physics

    Mapping the Dirac point in gated bilayer graphene

    Full text link
    We have performed low temperature scanning tunneling spectroscopy measurements on exfoliated bilayer graphene on SiO2. By varying the back gate voltage we observed a linear shift of the Dirac point and an opening of a band gap due to the perpendicular electric field. In addition to observing a shift in the Dirac point, we also measured its spatial dependence using spatially resolved scanning tunneling spectroscopy. The spatial variation of the Dirac point was not correlated with topographic features and therefore we attribute its shift to random charged impurities.Comment: 3 pages, 3 figure

    Spatially resolved spectroscopy of monolayer graphene on SiO2

    Full text link
    We have carried out scanning tunneling spectroscopy measurements on exfoliated monolayer graphene on SiO2_2 to probe the correlation between its electronic and structural properties. Maps of the local density of states are characterized by electron and hole puddles that arise due to long range intravalley scattering from intrinsic ripples in graphene and random charged impurities. At low energy, we observe short range intervalley scattering which we attribute to lattice defects. Our results demonstrate that the electronic properties of graphene are influenced by intrinsic ripples, defects and the underlying SiO2_2 substrate.Comment: 6 pages, 7 figures, extended versio
    • …
    corecore